Intervertebral Disc Tissue Engineering with Natural Extracellular Matrix-Derived Biphasic Composite Scaffolds

نویسندگان

  • Baoshan Xu
  • Haiwei Xu
  • Yaohong Wu
  • Xiulan Li
  • Yang Zhang
  • Xinlong Ma
  • Qiang Yang
چکیده

Tissue engineering has provided an alternative therapeutic possibility for degenerative disc diseases. However, we lack an ideal scaffold for IVD tissue engineering. The goal of this study is to fabricate a novel biomimetic biphasic scaffold for IVD tissue engineering and evaluate the feasibility of developing tissue-engineered IVD in vitro and in vivo. In present study we developed a novel integrated biphasic IVD scaffold using a simple freeze-drying and cross-linking technique of pig bone matrix gelatin (BMG) for the outer annulus fibrosus (AF) phase and pig acellular cartilage ECM (ACECM) for the inner nucleus pulposus (NP) phase. Histology and SEM results indicated no residual cells remaining in the scaffold that featured an interconnected porous microstructure (pore size of AF and NP phase 401.4 ± 13.1 μm and 231.6 ± 57.2 μm, respectively). PKH26-labeled AF and NP cells were seeded into the scaffold and cultured in vitro. SEM confirmed that seeded cells could anchor onto the scaffold. Live/dead staining showed that live cells (green fluorescence) were distributed in the scaffold, with no dead cells (red fluorescence) being found. The cell-scaffold constructs were implanted subcutaneously into nude mice and cultured for 6 weeks in vivo. IVD-like tissue formed in nude mice as confirmed by histology. Cells in hybrid constructs originated from PKH26-labeled cells, as confirmed by in vivo fluorescence imaging system. In conclusion, the study demonstrates the feasibility of developing a tissue-engineered IVD in vivo with a BMG- and ACECM-derived integrated AF-NP biphasic scaffold. As well, PKH26 fluorescent labeling with in vivo fluorescent imaging can be used to track cells and analyse cell--scaffold constructs in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering

Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAG...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Determination and comparison of specifics of nucleus pulposus cells of human intervertebral disc in alginate and chitosan–gelatin scaffolds

INTRODUCTION Low back pain is a major economical and social problem nowadays. Intervertebral disc herniation and central degeneration of disc are two major reasons of low back pain that occur because of structural impairment of disc. The intervertebral disc contains three parts as follows : Annulus fibrosus, transitional region, and nucleus pulposus, which forms the central nucleus of the disc....

متن کامل

Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering.

A novel design of silk-based scaffold is developed using a custom-made winding machine, with fiber alignment resembling the anatomical criss-cross lamellar fibrous orientation features of the annulus fibrosus of the intervertebral disc. Crosslinking of silk fibroin fibers with chondroitin sulphate (CS) was introduced to impart superior biological functionality. The scaffolds, with or without CS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015